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The Deconfining Phase Transition in 
Lattice Quantum Chromodynamics 

S. A. Gottlieb, ~'2 J. Kuti, 1,3 D.  Toussaint, 1 A. D.  Kennedy, 4 S. Meyer, 5 
B. J. Pendleton, 6 and R. L. Sugar 7 

We present a large-scale Monte Carlo calculation of the deconfining phase 
transition temperature in lattice quantum chromodynamics without fermions. 
Using the Wilson action, the transition temperature as a function of the lattice 
coupling g is consistent with scaling behavior dictated by the perturbative /~ 
function for 6/g z > 6.15. 
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INTRODUCTION 

This presentation is based on some recent work of our large-scale 
collaboration to study lattice quantum chromodynamics at finite 
temperatures.~l) 

In lattice QCD calculations one of the outstanding problems is to 
remove the lattice cutoff effects from physical quantities. This can only be 
accomplished with confidence in the scaling regime of the theory where the 
renormalization group fl function is universal and known in perturbation 
theory. 
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We believe that the deconfining phase transition with its first-order 
character may be the best tool to study the continuum limit of lattice 
QCD. The determination of the transition temperature is a unique test of 
the onset of scaling behavior, since the transition temperature To is free of 
cutoff dependent ultraviolet divergences. Locating To is relatively easy 
because the system undergoes a sharp first-order phase transition where 
rounding effects are small and controlled by finite-size scaling theory. On 
the basis of finite-size scaling theory for bulk properties we expect that 
thermodynamic quantities such as T~ can be studied on a smaller lattice 
than can correlations at the same value of the lattice coupling g. 

At present these calculations can be carried out only when the effects 
of quark vacuum polarization are neglected. The hope is that the 
experience gained from these studies of the pure gauge theory will be useful 
when improved techniques and larger computing power make inclusion of 
dynamical fermions practical. 

THE DECONFINING PHASE TRANSITION 
A N D  THE 13 FUNCTION 

The transition temperature Tc of the deconfining phase transition 
is a measurable physical quantity in the continuum. In the scaling limit 
of lattice QCD, T~ is renormalization group-invariant; that is, 
(d/da) T~[g(a)] =0, where a is the lattice cutoff. Using the known two- 
loop perturbative/~ function 

with 

_fl(g)=bog3+blgS+... 

11 
bo = 16~ 

(1) 

and 
102 

b 1 - (16z2)2  

T~ depends on the lattice coupling g as 

1 [ f. dg, 7 Tc = cons t -  exp - (2) 
a Jo/~(g')J 

The constant in (2) must be determined from nonperturbative calculations 
of To in the scaling regime. 
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We use a Monte Carlo measurement of the function a T ( g )  to deter- 
mine the /? function. The results are to be compared with the two-loop 
form of (1) to verify asymptotic scaling. 

G L O B A L  Z ( 3 )  S Y M M E T R Y  A N D  T H E  D E C O N F I N I N G  
T R A N S I T I O N  

Gluon thermodynamics for finite temperatures is realized by lattices 
with spatial volume n 3 and temporal size nt. (2'3~ The temporal size nt is 
identified with the inverse of the dimensionless function z(g)=aT.  The 
spatial size ns should be taken to infinity for fixed n t in the thermodynamic 
limit. This is only approximately realized in Monte Carlo calculations, and 
finite-size effects become an important issue in the discussion. 

The order parameter of the deconfining phase transition is the 
Polyakov loop P(x) which is defined as 

nt 

P(x) = tr ~I U,(x, t) (3) 
t = l  

where U, is an SU(3) matrix along a timelike link at spatial location x at 
time t. (4,s~ We shall denote the spatial average of P(x) by P and use it as 
the order parameter of the transition. 

Lattice QCD at finite temperature has a global Z(3) symmetry in 
addition to the local gauge symmetry associated with the color SU(3) 
group. The action under the Z(3) symmetry is invariant under mul- 
tiplication of all timelike links on a single time slice by the same element of 
Z(3). Under this symmetry transformation the order parameter transforms 
a s  

e ---, z P  (4) 

where z is a group element from Z(3). In the low-temperature confined 
phase P =  0 and the Z(3) symmetry is unbroken. In the high-temperature 
deconfined phase P C 0  and the symmetry is broken with a three-fold 
degeneracy. 

The dynamics of the Polyakov loop is determined by a three-dimen- 
sional effective theory: by local gauge invariance all timelike links can be 
set to the unit SU(3) matrix except on one time slice. By integrating out 
the spatial link variables, one can derive an effective SU(3) spin model in 
three dimensions to describe the interaction of the time-like link variables 
in the time-slice. (6'7'8) If this effective SU(3) spin model has short-range 
interactions, it is in the same universality class as the three-state Potts 
model in three dimensions and therefore a first-order transition is expected. 

822/43/5-6-25 
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Fig. 1. Scatter plots of the Polyakov loop on 193 x 14 lattices at 6 / g  2 = 6.45, 6.475, and 6.5 
showing the transit ion from the confined phase to the deconfined phase. The runs  contain 
28500, 22000, and 23750 sweeps, respectively, exclusive of warmups .  The average Polyakov 
loop over the lattice is plotted at every tenth sweep. 
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Fig. 1 (continued) 

The high-temperature broken symmetry phase is identified as a decon- 
fined phase because the free energy FQ of an isolated external quark source, 
as related to P by 

P ~ e  . . . .  FQ (5) 
is finite when P r 0. 

T H E  M O N T E  C A R L O  S I M U L A T I O N  

In a recent paper, (9) a Monte Carlo calculation of the critical coupling 
g was reported for r i ranging from 2 to 10. A pronounced nonscaling 
behavior was found in the coupling constant range 5.1 < 6/gZ< 6.1. A new 
very large-scale simulation is reported here in for z-1 from 8 to 14. 

We used the "Wilson" action, or the trace of the product of the link 
matrices around the elementary plaquettes, in the fundamental represen- 
tation. The calculations were done one Cyber 205 supercomputers and on 
ST100 array processors. Different programs were used, one using the 
"quasi-heat-bath" method, (1~ and the other the Metropolis method. The 
Cyber 205 code was running in 32-bit precision with 19 #s/link update 
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Fig .  2. T h e  s a m e  d a t a  as  in  F ig .  1. H e r e  f ive s u c c e s s i v e  m e a s u r e m e n t s  h a v e  b e e n  a v e r a g e d  t o  
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Fig. 2 (continued) 

time using the quasi-bath algorithm. The ST100 code used 16-bit precision 
with 105/~s/link update time with 15 Metropolis hits/link including 
measurements at every fourth sweep and reunitarization after every second 
sweep. 

Runs reported here range in length from 1 • 10 4 to 3 x 10 4 sweeps. 
Except for the first run at each lattice size, the lattice was intialized to the 
result of a run at a nearby value of/3 on the same size lattice. The first 2000 
sweeps at each coupling were discarded. This number, 2000, represents a 
compromise between the ideal of a truly independent start and the scarcity 
of data. 

New results are shown from three Monte Carlo runs in Fig. 1. These 
results are from 193x 14 lattices, the largest size we have studied. In the 
first run we are below the transition point in the confined phase. The 
second run shows the system near the transition point with the coexisting 
confined and deconfined phases. In the third run we are above the trans- 
ition point in the deconfined phase. 

In an attempt to clarify scatter plots such as these, we have made 
"blocked" scatter plots in which we averaged the Polyakov loop over 
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several successive measurements. The idea is that we are averaging out the 
high-frequency (in Monte Carlo sweeps) scatter in the data but leaving the 
much slower movement of the system among the different available phases. 
Figure 2 shows the same data as in Fig. 1, where five successive points have 
been averaged. 

The coexistence of the confined and deconfined phases over runs of 
extended length (20,000 to 30,000 sweeps were typically required to study 
the system close to the transition point) and the jump in the order 
parameter P provide evidence that the transition is of first order. 

The width A/~ of a temperature-driven, first-order phase transition is 
expected to scale as 

AT 1 
(6) 

T sV 

where V = n  3 is the spatial volume and s in the latent entropy of the 
system. ~ For small values of the jump in the "magnetization" P the 
latent entropy will be proportional to the jump in P at the transition point. 
Near a first-order phase transition we also anticipate a shift in Tc as a 
function of the volume V with the same scaling law given by (5). 

Estimates of Tc can be made from visual inspection of scatter plots 
such as those in Figs. 1 and 2 and plots of the magnitude of the order 
parameter versus sweep number. Naturally it would be useful to have a 
quantitative measure of the degree of confinement or deconfinement of a 
finite-size lattice. In an attempt to do this we have studied the dimen- 
sionless quantity 

rc = ( c o s E 3  arg(e)] (7) 

which we call the "triality." Here arg(P) is the phase of the order 
parameter, and the brackets indicate an average over the Monte Carlo 
samples. The triality depends on the coupling g, the temporal size nt, and 
the spatial size n~. It vanishes in the confined phase and is one in the 
deconfined phase on an infinite spatial lattice. The triality can be used to 
extract the critical temperature from measurements on lattices with finite 
spatial volumes. One can measure the value of g for which the triality 
passes through an arbitrary value on lattices of different spatial sizes and 
extrapolate to infinite spatial size using the scaling of (5). This procedure 
works well for nt = 4 and nt = 6, where we have accurate data for a range of 
spatial volumes, and we have verified that the results are independent of 
the value of the triality used to define the phase transition. On the larger 
lattices on which we are reporting we have data on such a small range of 
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Table I. The Measured Critical Values of 6/g 4 for 
Di f ferent  Values of 1-1 and Spatial Size 

"C --1 N, 6/g 2 

8 13 6.02 + .02 
19 6.02 • .02 

10 17 6.15 • .03 

12 17 6.32 _ .03 
19 6.32 _ .03 

14 19 6.47 • .03 
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volumes that this approach has no real advantage over visual inspection of 
the scatter plots for determining the critical temperature. We have still 
found it useful in estimating the errors in our results to calculate the 
statistical uncertainty in the value of/~ at which the triatity reaches some 
arbitrary value. Table I summarizes our results of a large number of Monte 
Carlo runs. 

Estimation of the statistical errors is difficult because of the limited 
amount  of data and because the Tc estimates come largely from visual 
inspection of scatter plots and time histories. Even our longest runs contain 
only a handful of tunnelings among the different phases, so one cannot sen- 
sibly divide the runs into many independent subsets as we would do if we 
had much more data. Thus our quoted errors represent the range of/~ over 
which the scatter plots appear to change from clearly confined to clearly 
deconfined. 

A more detailed discussion of our simulation and the analysis is in 
preparation.(13) 

C O N C L U S I O N  

The main physics result of our work is depicted in Fig. 3. The 
measured values of Tc/A are plotted there in the range from 8 to 14 for ~-1. 
For  the sake of clarity points at r - I  = 2, 4, 6 from Ref. 8 are also included. 
Where the relation between gc and z -~ is that predicted by two-loop per- 
turbation theory, this graph will be a horizontal line. The height of the line 
gives the constant of proportionality between A and To. 

The following remarkable structure appears: after apparent early 
scaling between 5 .1<6 /g2<5 .7  there is strong scaling violation in the 
range 5 .7<6 /g2<6 .10  and, finally, asymptotic scaling is observed for 
6 .15<6/g2<6.50.  This appears to be an earlier onset of scaling than 
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Fig. 3. The onset of scaling in the deconfinement temperature. 

reported from recent Monte Carlo renormalization group (14'~5) and ratio 
test methodsJ 16) 

The onset of scaling is at much weaker coupling than early optimistic 
expectations. This means that either a large increase in computer power or 
a substantial improvement on Wilson's lattice action is needed for practical 
calculations of hadron properties. However, this work does provide 
evidence that Monte Carlo calculations with/~ > 6.15 on sufficiently large 
lattices can provide believable answers for continuum quantities in pure 
gauge QCD. 

After completion of our work we learned about some related recent 
results with somewhat similar findings/17) Though the qualitative con- 
clusion of Ref. 17 on the onset of scaling is similar to ours, the differences 
in details will require further clarification. 
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